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Clustering of correlated networks
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We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of
networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting for-
mulas allow one to determine the nature of the clustering of a network.
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In principle, loops and, in particular, loops of length threegraphs are closer to reality than the classical random graphs,
which lead to the clustering of networks, are a specific kindbut the absence of correlations is a very restrictive factor. If
of correlations. Usually, real-world networks are stronglywe wish to make a step toward real networks, we have to
clustered structures, and many efforts were made to inverfitroduce a network with degree—degree correlations,
special mechanisms producing strong clustering even if°(k,k"). The simplest formal way to do this is in the spirit
small net§1,2]. The number of the proposed mechanisms isof the configuration model. That is, consider random graphs
rapidly growing, but the recent development of the fieldWhich are maximz_;\IIy. raqdom under the cqnstraint that their
[3—6] shows that in very many real networks the high clus-degree—degree distribution is equal to a given 6H&,k”").
tering is only a finite-size effect. So, in this case, no addi-1Nis is the minimal construction of a random graph with
tional mechanism of strong clustering is needed. The probth€Se correlations. In this construction, as the size of a graph
lem is to reliably conclude whether or not the clustering of a2PProaches infinity, loops become insignificant, and the clus-

real network is a finite-size effect which can be explained b>}er|ng vanishe$25].

: X . . In the present report we obtain analytical expressions for
using basic random graph constructi¢i$ Evidently, com- . : .

: . . ) ... the complete list of the clustering characteristics of the ran-
parison with results obtained in the framework of specific

dom graphs with these important degree—degree correlations

mOdG:"S .With many _adjusting parameters cannot lead to anP’see Eqgs(8)—(10)]. These formulas, after the substitution of
convincing conclusion.

; _ _ ) _a measured distributiorP(k,k"), allow one to conclude
Another basic though particular kind of correlations i\ hether or not the clustering of a real-world or generated

networks are correlations between the numbers of CoONNEGiatwork is simply a finite-size effect, the same as in a maxi-
tions (degrees of the nearest-neighbor verticg—20]. Net- mally random graph with this degree—degree distribution.
works with these specific correlations are being extensively,thermore, the resulting clustering characteristics are
studied these days, and the term “correlated networks” often, ajitatively different from those of uncorrelated networks.
implies just this t.ype of correlations. These pair correlations” 114 graphs in this report are completely described by the
were measured in a number of real netwofis 14,19, so  jqin gistributionP(k,k’) of the degrees of end vertices of an
the joint distribution of the degrees of the nearest-neighbo dge of the graphS, . P(kk')=1, P(kk')=P(K’ k).
vertices,P(k,k") is considered as one of metrics of a net- The degree distributioﬁ’(k) is determined byP(k k')
work. Note that as a rule, these correlations do not vanish in
the large network limit. —

The classical random grapligl,22 with their Poisson P(k)= E 2 P(k,k') )
degree distribution provide a nonadequate im_age of a real ko A
complex network and a very weak clusteri@sk/N. Here

k is the mean degree of a graph aNds its size(the total ~ where the mean degrée=(k)==,kP(k) is
number of vertices Random graphs with given degree-
distribution P(k) (the configuration model of mathematical _
graph theory23]) are much closer to real complex networks. =
It is the values of the clustering coefficient of this model
CxN~1[7,24] that were compared with empirical data for
real-world networks. In the following, we assume that the total number of vertices
The configuration model and its variations provide-  Of the graphN, is large and consider only the main contri-
correlated random graphs which are maximally random bution to the clustering.
(i.e., with the maximum entropyunder the constraint that ~ P(k,k") can be obtained by using empirical data as fol-
their degree distribution is equal to a given oR€k). These  lows. If k#k’, P(k,k")=P(k’ k) is one half of the ratio of
the number of edges connecting vertices of degkessd k'’
to the total number of edgek,=kN/2. If k=k', P(k,k) is
*Electronic address: sdorogov@fc.up.pt the ratio of the number of edges connecting vertices of de-
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greesk andk to L. As is natural, the case=k’ is perfecty —1 andq’—1 “free connections”(apart of the connections
adjacent to the cade#k’. These cases are presented sepato the mother vertex Let us select one of the free connec-
rately for the sake of clarity. tions of theq vertex. The probability that this edge will
The set of clustering characteristics of networks, consid“choose” one of theq’ — 1 free connections of thg’ vertex
ered up to now, includes the following. is given by the product between two central dots on the
(i) The degree-dependent local clusteri@¢k). This is  right-hand part of the formula. The facté{q’|q) is evident:
the mean relative number of connectiofisss than 1) be- the second end of the edge must be of degreeSo our

tween two nearest neighbors of a vertex of dedeee edge must choosggrasp”) one of theq’—1 free connec-
tions of theq’ vertex among almosdtiq’ P(q') possibilities

Clk)= (Mpy(K)) 3 in the network.(All these possibilities are equiprobable in
k(k—1)/2’ the construction which is considered hér€his is the total

_ _ number of free connections provided ByP(q’) vertices of
where (m,(k)) is the average number of connections be-degreeqf in the network. This givesq’ —1)/[Nq'P(q")].

tween the nearest neighbors of a vertex of dedree (iii) Finally, we must multiply this probability by the
(i) The mean clusteringmean clustering coefficient numberq—1 of the free connections of thgvertex.
which is defined as The result is Eq(7). Note that we used the fact thiitis
large and the probability that the edge between the nearest
EEE P(k)C(K). (4) neighpor_ present i; small, so our formulas are asymptotic.
K Substituting Eq(6) into Eq.(7) gives the degree-dependent

. . S ] local clustering
(iii) The clustering coefficient, which is defined as

P
P (Min(k)) — Zik(k=1)P(k)C(k) 5) C(k)=

= 2p2
CESPOKK-D2 )k Nk"P(k)
This coincides with the traditional definition: the clustering X > (@'~ Dla-1P(@".a)P(q ,k)P(q,k),
coefficient is three times the ratio of the total number of 9.q'>1 aq'P(q)P(q’)
loops of length three in a graph to the total number of con- 8
nected vertex triples. In simple terms, this is the “concentra-
tion” of loops of length three. the mean clustering
In the network literatureC and C are often mistakenly .
mixed, and both are called “the clustering coefficient.” — k3 (a'=1)(g—1)P(q’',q9)P(q’.k)P(q,k)
Nonetheless, the difference may be great. In real networks, C= N 2 K2qq' P(q)P(q")P(K '
up to a tenfold difference was observigl. One can even ka.q =1 aq"P(a)P(q")P(k) 9)

find examples ofinfinite) nets whereC=0 while C is finite.

We shall obtain the clustering characteristiegk), C,  and the clustering coefficient
andC of correlated graphs, but let us first introduce the con-

ditional probabilityP(k|k") that if one end vertex of an edge _ K
is of degreek’, then its other end vertex is of degrke - N(KA—K)
P(k,k") —P(k,k") (k—=1)(q"-1)(q-1)P(q’,q)P(q’,k)P(q,k)
P(k|k') = ~k . () x 2 , ,
S P(kk")  k'P(k") ka.g'>1 kqa'P(a)P(q")P(k)

(10
Then the local clustering, that is, the probability that two
nearest neighbors of a vertex of degkeel are connected is of the correlated network with given correlatioRgk,k’).
(q'—1) The degree distributio® (k) in these formulas may be ex-
B , , q - . pressed in terms oP(k,k’) by using the relationgl) and
C(k)_q qz’>]_ P(a’[k)P(alk)-P(a’a) Ng' P(q’) (@-1). (2). The resultd8)—(10) may be written in a more compact
’ (7)  formin terms of conditional probabilities, see E§), but the

present form is more convenient for empirical researchers.

Ont_a can easily understand tr,1is formula. _ In uncorrelated networksP(k,k’)=kP(k)k’P(k’)/P
(i) The first two factorsP(q’|k)P(q|k) on the right-hand  anq the probability that the nearest neighbor of a vertex is of

side, which should be accounted for before the summatio : ™ : _
overgandq’, are evident: these are the probabilities that thq%ﬁgc\?ﬁlessﬁz(?k)zlég' In this case, Eq48)—~(10) reduce to the

vertices are of degreaesandq’.

(i) In fact, we must calculate the probability that the near- (k) — K2
est neighbors with degregsandq’ of a vertex of degre& C(k)=€=C= ARV (12
are connected to each other. We have two vertices with Nk®
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The formulas(8)—(11) are asymptotically exact. close enough, then the clustering of a net is explained by the
Note that in uncorrelated network€(k) is independent basic correlated random graph construction and so is a
of k and so all the three characteristics are equal. Contrasgimple finite-size effect. Only if the calculated characteristics
ingly, degree-degree correlations lead to a degree-dependetiffer strongly from the measured ones, the clustering has
local clustering[see Eq.(8)]. Previously, this feature was nontrivial nature.
observed in a number of model and real netwd26-31. Note that in sparse networks, measured degree—degree
Here we demonstrate that this dependence is a direct consgrstributions strongly fluctuate due to poor statistics. This
guence of degree-degree correlations. The deg_ree-depend%tor cannot spoil the result®)—(10), since even strong
local clustering leads to the difference betwe@nand C, fluctuations are summed out.
which were found in many real-world networka8—-30. One should indicate two restriction§) The formulas
One should note that the formuld) for the degree- (8)—(11) are asymptotidlarge N, sufficiently “weak” clus-
dependent local clustering resembles the expreg§ionfor tering). So, one may hope that they are goo@ i less than,
the Ioc_al clustering of a correlatgq netwﬁg/rk with hidden vari-say, 0.1, but only qualitative comparison is possible if, e.g.,
ables in the recent paper of Mami@ogura and Romualdo —  _ 3 ji) The growth of real-world networks produces a
Pastor-Satorras, Ref32]. However, there is an essential dif- \iqe spectrum of correlations, and the correlations between

ference between these two results. The result of B&lis 0 jegrees of the nearest-neighbor vertices are only one spe-

C(k), expressed in terms of the correlations of hidden variig: type of correlations. The construction that is considered
ables(“fitnesses”) which were used to generate a correlated

N . ; in this report ignores the long-range and multivertex correla-
network. It is impossible to find the exact form of these s The empirical data on such correlations is absent.
h|dden varlaple correlations from_empmpal data. Contrast- |, summary, we obtained the clustering characteristics of
ingly, Eq. (8) in the present work is obtained for a random nayyorks with correlations between degrees of the nearest-
network, which is completely described BYk,k"), and ex-  pejghnor vertices. These correlations are a common feature
pressesC(k) directly in terms of the observable degree— ot yoq networks. Our formulas allow one to easily conclude
degree distributioP(k,k"). It is the latter circumstance that \vhether or not the clustering of a network is determined by
allows one to use Eq#8)—(10) for the structural analysis of - he form of its degree—degree distribution and so is a simple
networks. _ _ finite-size effect. So, Eqs8)—(10) can shed light on the
The number of edges connecting vertices of degke®®  na1yre of the clustering of networks. We hope that these

k' can be easily measured in any real-world or generatedimple expressions will be a useful tool for the analysis of
network [11-13,19. Substituting these numbers together aai-world and generated networks.

with the numbers of vertices of degr&ento Egs.(8)—(10)

will provide one with the clustering characteristics of a maxi-  This work was partially supported by Project No. POCTI/
mally random graph with the same degree—degree correld999/FIS/33141. The author thanks A.V. Goltsev, M. Bo-
tions as the real network. These clustering characteristicgurg, and A.N. Samukhin for useful discussions. Special
may be compared with those of the real net. If the results arthanks to the Centro de $ica do Porto and J.F.F. Mendes.
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